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Abstract

Many academic journals ask their authors to provide a list of about five to fifteen keywords,

to appear on the first page of each article. Since these key words are often phrases of two or

more words, we prefer to call them keyphrases. There is a wide variety of tasks for which

keyphrases are useful, as we discuss in this paper. We approach the problem of automatically

extracting keyphrases from text as a supervised learning task. We treat a document as a set of

phrases, which the learning algorithm must learn to classify as positive or negative examples

of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm

to this learning task. We evaluate the performance of nine different configurations of C4.5.

The second set of experiments applies the GenEx algorithm to the task. We developed the

GenEx algorithm specifically for automatically extracting keyphrases from text. The experi-

mental results support the claim that a custom-designed algorithm (GenEx), incorporating

specialized procedural domain knowledge, can generate better keyphrases than a general-

purpose algorithm (C4.5). Subjective human evaluation of the keyphrases generated by

Extractor suggests that about 80% of the keyphrases are acceptable to human readers. This

level of performance should be satisfactory for a wide variety of applications.

Keyphrases: machine learning, summarization, indexing, keywords, keyphrase extraction.
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Learning Algorithms for Keyphrase Extraction

1. Introduction

Many journals ask their authors to provide a list of keywords for their articles. We call these

keyphrases, rather than keywords, because they are often phrases of two or more words,

rather than single words. We define a keyphrase list as a short list of phrases (typically five to

fifteen noun phrases) that capture the main topics discussed in a given document. This paper

is concerned with the automatic extraction of keyphrases from text. 

Keyphrases are meant to serve multiple goals. For example, (1) when they are printed on

the first page of a journal article, the goal is summarization. They enable the reader to

quickly determine whether the given article is in the reader’s fields of interest. (2) When they

are printed in the cumulative index for a journal, the goal is indexing. They enable the reader

to quickly find a relevant article when the reader has a specific need. (3) When a search

engine form has a field labelled keywords, the goal is to enable the reader to make the search

more precise. A search for documents that match a given query term in the keyword field will

yield a smaller, higher quality list of hits than a search for the same term in the full text of the

documents. Keyphrases can serve these diverse goals and others, because the goals share the

requirement for a short list of phrases that captures the main topics of the documents. 

We define automatic keyphrase extraction as the automatic selection of important, topi-

cal phrases from within the body of a document. Automatic keyphrase extraction is a special

case of the more general task of automatic keyphrase generation, in which the generated

phrases do not necessarily appear in the body of the given document. Section 2 discusses cri-

teria for measuring the performance of automatic keyphrase extraction algorithms. In the

experiments in this paper, we measure the performance by comparing machine-generated

keyphrases with human-generated keyphrases. In our document collections, an average of

about 75% of the author’s keyphrases appear somewhere in the body of the corresponding

document. Thus, an ideal keyphrase extraction algorithm could (in principle) generate
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phrases that match up to 75% of the author’s keyphrases. 

There is a need for tools that can automatically create keyphrases. Although keyphrases

are very useful, only a small minority of the many documents that are available on-line today

have keyphrases. There are already some commercial software products that use automatic

keyphrase extraction algorithms. For example, Microsoft uses automatic keyphrase extrac-

tion in Word 97, to fill the Keywords field in the document metadata template (metadata is

meta-information for document management).1 Verity uses automatic keyphrase extraction

in Search 97, their search engine product line. In Search 97, keyphrases are highlighted in

bold to facilitate skimming through a list of search results.2 Tetranet uses automatic key-

phrase extraction in their Metabot product, which is designed for maintaining metadata for

web pages. Tetranet also uses automatic keyphrase extraction in their Wisebot product,

which builds an index for a web site.3 

Although the applications for keyphrases mentioned above share the requirement for a

short list of phrases that captures the main topics of the documents, the precise size of the list

will vary, depending on the particular application and the inclinations of the users. Therefore

the algorithms that we discuss allow the users to specify the desired number of phrases. 

We discuss related work by other researchers in Section 3. The most closely related work

involves the problem of automatic index generation (Fagan, 1987; Salton, 1988; Ginsberg,

1993; Nakagawa, 1997; Leung and Kan, 1997). One difference between keyphrase extraction

1. To access the metadata template in Word 97, select File and then Properties. To automatically fill the Keywords

field, select Tools and then AutoSummarize. (This is not obvious from the Word 97 documentation.) Microsoft

and Word 97 are trademarks or registered trademarks of Microsoft Corporation. 

2. Microsoft and Verity use proprietary techniques for keyphrase extraction. It appears that their techniques do

not involve machine learning. Verity and Search 97 are trademarks or registered trademarks of Verity Inc.

3. Tetranet has licensed our keyphrase extraction software for use in their products. Tetranet, Metabot, and Wise-

bot are trademarks or registered trademarks of Tetranet Software. For experimental comparisons of Word 97

and Search 97 with our own work, see Turney (1997, 1999). 
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and index generation is that, although keyphrases may be used in an index, keyphrases have

other applications, beyond indexing. Another difference between a keyphrase list and an

index is length. Because a keyphrase list is relatively short, it must contain only the most

important, topical phrases for a given document. Because an index is relatively long, it can

contain many less important, less topical phrases. Also, a keyphrase list can be read and

judged in seconds, but an index might never be read in its entirety. Automatic keyphrase

extraction is thus a more demanding task than automatic index generation.

Keyphrase extraction is also distinct from information extraction, the task that has been

studied in depth in the Message Understanding Conferences (MUC-3, 1991; MUC-4, 1992;

MUC-5, 1993; MUC-6, 1995). Information extraction involves extracting specific types of

task-dependent information. For example, given a collection of news reports on terrorist

attacks, information extraction involves finding specific kinds of information, such as the

name of the terrorist organization, the names of the victims, and the type of incident (e.g.,

kidnapping, murder, bombing). In contrast, keyphrase extraction is not specific. The goal in

keyphrase extraction is to produce topical phrases, for any type of factual, prosaic document. 

We approach automatic keyphrase extraction as a supervised learning task. We treat a

document as a set of phrases, which must be classified as either positive or negative exam-

ples of keyphrases. This is the classical machine learning problem of learning from exam-

ples. In Section 5, we describe how we apply the C4.5 decision tree induction algorithm to

this task (Quinlan, 1993). There are several unusual aspects to this classification problem.

For example, the positive examples constitute only 0.2% to 2.4% of the total number of

examples. C4.5 is typically applied to more balanced class distributions. 

The experiments in this paper use five collections of documents, with a combined total of

652 documents. The collections are presented in Section 4. In our first set of experiments

(Section 6), we evaluate nine different ways to apply C4.5. In preliminary experiments with

the training documents, we found that bagging seemed to improve the performance of C4.5
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(Breiman, 1996a, 1996b; Quinlan, 1996). Bagging works by generating many different deci-

sion trees and allowing them to vote on the classification of each example. We experimented

with different numbers of trees and different techniques for sampling the training data. The

experiments support the hypothesis that bagging improves the performance of C4.5 when

applied to automatic keyphrase extraction. 

During our experiments with C4.5, we came to believe that a specialized algorithm,

developed specifically for learning to extract keyphrases, might achieve better results than a

general-purpose learning algorithm, such as C4.5. Section 7 introduces the GenEx algorithm.

GenEx is a hybrid of the Genitor steady-state genetic algorithm (Whitley, 1989) and the

Extractor parameterized keyphrase extraction algorithm (Turney, 1997, 1999).4 Extractor

works by assigning a numerical score to the phrases in the input document. The final output

of Extractor is essentially a list of the highest scoring phrases. The behaviour of the scoring

function is determined by a dozen numerical parameters. Genitor tunes the setting of these

parameters, to maximize the performance of Extractor on a given set of training examples.

The second set of experiments (Section 8) supports the hypothesis that a specialized

algorithm (GenEx) can generate better keyphrases than a general-purpose algorithm (C4.5).

Both algorithms incorporate significant amounts of domain knowledge, but we avoided

embedding specialized procedural knowledge in our application of C4.5. It appears that some

degree of specialized procedural knowledge is necessary for automatic keyphrase extraction. 

The third experiment (Section 9) looks at subjective human evaluation of the quality of

the keyphrases produced by GenEx. On average, about 80% of the automatically generated

keyphrases are judged to be acceptable and about 60% are judged to be good.

Section 10 discusses the experimental results and Section 11 presents our plans for future

work. We conclude (in Section 12) that GenEx is performing at a level that is suitable for

4. Extractor is an Official Mark of the National Research Council of Canada. Patent applications have been sub-

mitted for Extractor. 
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many practical applications.

2. Measuring the Performance of Keyphrase Extraction Algorithms

We measure the performance of keyphrase extraction algorithms by the number of matches

between the machine-generated phrases and the human-generated phrases. A handmade key-

phrase matches a machine-generated keyphrase when they correspond to the same sequence

of stems. A stem is what remains when we remove the suffix from a word. By this definition,

“neural networks” matches “neural network”, but it does not match “networks”. The order in

the sequence is important, so “helicopter skiing” does not match “skiing helicopter”. 

The Porter (1980) and Lovins (1968) stemming algorithms are the two most popular

algorithms for stemming English words. Both algorithms use heuristic rules to remove or

transform English suffixes. The Lovins stemmer is more aggressive than the Porter stemmer.

That is, the Lovins stemmer is more likely to recognize that two words share the same stem,

but it is also more likely to incorrectly map two distinct words to the same stem (Krovetz,

1993). We have found that aggressive stemming is better for keyphrase extraction than con-

servative stemming. In our experiments, we have used an aggressive stemming algorithm that

we call the Iterated Lovins stemmer. The algorithm repeatedly applies the Lovins stemmer,

until the word stops changing. Iterating in this manner will necessarily increase (or leave

unchanged) the aggressiveness of any stemmer. Table 1 shows some examples of the behav-

iour of the three stemming algorithms.5 

We may view keyphrase extraction as a classification problem. The task is to classify

5. We used an implementation of the Porter (1980) stemming algorithm written in Perl, by Jim Richardson, at the

University of Sydney, Australia. This implementation includes some extensions to Porter’s original algorithm,

to handle British spelling. It is available at http://www.maths.usyd.edu.au:8000/jimr.html. For the Lovins

(1968) stemming algorithm, we used an implementation written in C, by Linh Huynh. This implementation is

part of the MG (Managing Gigabytes) search engine, which was developed by a group of people in Australia

and New Zealand. The MG code is available at http://www.cs.mu.oz.au/mg/. 
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each word or phrase in the document into one of two categories: either it is a keyphrase or it

is not a keyphrase. We evaluate automatic keyphrase extraction by the degree to which its

classifications correspond to human-generated classifications. Our performance measure is

precision (the number of matches divided by the number of machine-generated keyphrases),

using a variety of cut-offs for the number of machine-generated keyphrases. 

3. Related Work

Although there are several papers that discuss automatically extracting important phrases, as

far as we know, we are the first to treat this problem as supervised learning from examples.

Krulwich and Burkey (1996) use heuristics to extract keyphrases from a document. The heu-

ristics are based on syntactic clues, such as the use of italics, the presence of phrases in sec-

tion headers, and the use of acronyms. Their motivation is to produce phrases for use as

features when automatically classifying documents. Their algorithm tends to produce a rela-

tively large list of phrases, with low precision. Muñoz (1996) uses an unsupervised learning

algorithm to discover two-word keyphrases. The algorithm is based on Adaptive Resonance

Theory (ART) neural networks. Muñoz’s algorithm tends to produce a large list of phrases,

with low precision. Also, the algorithm is not applicable to one-word or more-than-two-word

keyphrases. Steier and Belew (1993) use the mutual information statistic to discover two-

Table 1: Samples of the behaviour of three different stemming algorithms. 

Word Porter Stem Lovins Stem Iterated Lovins Stem

believes believ belief belief

belief belief belief belief

believable believ belief belief

jealousness jealous jeal jeal

jealousy jealousi jealous jeal

police polic polic pol

policy polici polic pol

assemblies assembli assembl assembl

assembly assembli assemb assemb

probable probabl prob prob

probability probabl prob prob

probabilities probabl probabil probabil
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word keyphrases. This approach has the same limitations as Muñoz (1996), when considered

as a keyphrase extraction algorithm: it produces a low precision list of two-word phrases. 

In the time since this paper was submitted for publication, Frank et al. (1999) have

implemented a system, Kea, which builds on our work (Turney, 1997, 1999). It treats key-

phrase extraction as a supervised learning problem, but it uses a Bayesian approach instead

of a genetic algorithm approach. Their experiments indicate that Kea and GenEx have statis-

tically equivalent levels of performance. The same group (Gutwin et al., 1999) has evaluated

Kea as a component in a new kind of search engine, Keyphind, designed specially to support

browsing. Their experiments suggest that certain kinds of tasks are much easier with Keyph-

ind than with conventional search engines. The Keyphind interface is somewhat similar to

the interface of Tetranet’s Wisebot. 

Several papers explore the task of producing a summary of a document by extracting key

sentences from the document (Luhn, 1958; Edmundson, 1969; Marsh et al., 1984; Paice,

1990; Paice and Jones, 1993; Johnson et al., 1993; Salton et al., 1994; Kupiec et al., 1995;

Brandow et al., 1995; Jang and Myaeng, 1997). This task is similar to the task of keyphrase

extraction, but it is more difficult. The extracted sentences often lack cohesion because ana-

phoric references are not resolved (Johnson et al., 1993; Brandow et al., 1995). Anaphors are

pronouns (e.g., “it”, “they”), definite noun phrases (e.g., “the car”), and demonstratives (e.g.,

“this”, “these”) that refer to previously discussed concepts. When a sentence is extracted out

of the context of its neighbouring sentences, it may be impossible or very difficult for the

reader of the summary to determine the referents of the anaphors. Johnson et al. (1993)

attempt to automatically resolve anaphors, but their system tends to produce overly long

summaries. Keyphrase extraction avoids this problem because anaphors (by their nature) are

not keyphrases. Also, a list of keyphrases has no structure; unlike a list of sentences, a list of

keyphrases can be randomly permuted without significant consequences. 

Most of these papers on summarization by sentence extraction describe algorithms that
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are based on manually derived heuristics. The heuristics tend to be effective for the intended

domain, but they often do not generalize well to a new domain. Extending the heuristics to a

new domain involves a significant amount of manual work. A few of the papers describe

learning algorithms, which can be trained by supplying documents with associated target

summaries (Kupiec et al., 1995; Jang and Myaeng, 1997). Learning algorithms can be

extended to new domains with less work than algorithms that use manually derived heuris-

tics. However, there is still some manual work involved, because the training summaries

must be composed of sentences that appear in the document, which means that standard

author-supplied abstracts are not suitable. An advantage of keyphrase extraction is that stan-

dard author-supplied keyphrases are suitable for training a learning algorithm, because the

majority of such keyphrases appear in the bodies of the corresponding documents. 

Another body of related work addresses the task of information extraction. An informa-

tion extraction system seeks specific information in a document, according to predefined

template. The template is specific to a given topic area. For example, if the topic area is news

reports of terrorist attacks, the template might specify that the information extraction system

should identify (i) the terrorist organization involved in the attack, (ii) the victims of the

attack, (iii) the type of attack (kidnapping, murder, etc.), and other information of this type.

ARPA has sponsored a series of Message Understanding Conferences (MUC-3, 1991; MUC-

4, 1992; MUC-5, 1993; MUC-6, 1995), where information extraction systems are evaluated

with corpora in various topic areas, including terrorist attacks and corporate mergers. 

Most information extraction systems are manually built for a single topic area, which

requires a large amount of expert labour. The highest performance at the Fifth Message

Understanding Conference (MUC-5, 1993) was achieved at the cost of two years of intense

programming effort. However, recent work has demonstrated that a learning algorithm can

perform as well as a manually constructed system (Soderland and Lehnert, 1994). Soderland

and Lehnert (1994) use decision tree induction as the learning component in their informa-
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tion extraction system. In Soderland and Lehnert’s (1994) system, each slot in a template is

handled by a group of decision trees that have been trained specially for that slot. The deci-

sion trees are based on syntactical features of the text, such as the presence of certain words. 

Information extraction and keyphrase extraction are at opposite ends of a continuum that

ranges from detailed, specific, and domain-dependent (information extraction) to condensed,

general, and domain-independent (keyphrase extraction). The different ends of this contin-

uum require substantially different algorithms. However, there are intermediate points on

this continuum. An example is the task of identifying corporate names in business news. This

task was introduced in the Sixth Message Understanding Conference (MUC-6, 1995), where

it was called the Named Entity Recognition task. The best system used hand-crafted linguis-

tic rules to recognize named entities (Krupka, 1995). 

Other related work addresses the problem of automatically creating an index (Sparck

Jones, 1973; Field, 1975; Fagan, 1987; Salton, 1988; Croft et al., 1991; Ginsberg, 1993;

Nakagawa, 1997; Leung and Kan, 1997). Leung and Kan (1997) provide a good survey of

this work. There are two general classes of indexes: indexes that are intended for human

readers to browse (often called back-of-book indexes) and indexes that are intended for use

with information retrieval software (search engine indexes). Search engine indexes are not

suitable for human browsing, since they usually index every occurrence of every word

(excluding stop words) in the document collection. Back-of-book indexes tend to be much

smaller, since they index only important occurrences of interesting words and phrases. The

older work on automatically creating an index (Sparck Jones, 1973; Field, 1975; Fagan,

1987) is concerned with building search engine indexes, not with building back-of-book

indexes (Salton, 1988; Nakagawa, 1997; Leung and Kan, 1997).

Since we are interested in keyphrases for human browsing, back-of-book indexes are

more relevant than search engine indexes. Leung and Kan (1997) address the problem of

learning to assign index terms from a controlled vocabulary. This involves building a statisti-
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cal model for each index term in the controlled vocabulary. The statistical model attempts to

capture the syntactic properties that distinguish documents for which the given index term is

appropriate from documents for which it is inappropriate. Their results are interesting, but

the use of a controlled vocabulary makes it difficult to compare their work with the algo-

rithms we examine here. It is also worth noting that a list of controlled index terms must

grow every year, as the body of literature grows, so Leung and Kan’s (1997) software would

need to be continuously trained.

Nakagawa (1997) automatically extracts simple and compound nouns from technical

manuals, to create back-of-book indexes. Each compound noun is scored using a formula

that is based on the frequency of its component nouns in the given document. In his experi-

ments, Nakagawa (1997) evaluates his algorithm by comparing human-generated indexes to

machine-generated indexes. However, Nakagawa’s (1997) human-generated indexes were

generated with the assistance of his algorithm, which tends to bias the results. 

One feature that distinguishes a back-of-book index from a keyphrase list is length. As

Nakagawa (1997) observes, a document is typically assigned  keyphrases, but a

back-of-book index typically contains  index terms. Also, keyphrases are usually

intended to cover the whole document, but index terms are intended to cover only a small

part of a document. Another distinguishing feature is that a sophisticated back-of-book index

is not simply an alphabetical list of terms. There is often a hierarchical structure, where a

major index term is followed by an indented list of related minor index terms. 

4. The Corpora

The experiments in this paper are based on five different document collections. For each

document, there is a target set of keyphrases, generated by hand. Some basic statistics for

the five corpora are presented in Table 2.  

For the Journal Articles corpus, we selected 75 journal articles from five different jour-

nals. Three of the journals are about cognition (Psycoloquy, The Neuroscientist, Behavioral
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& Brain Sciences Preprint Archive), one is about the hotel industry (Journal of the Interna-

tional Academy of Hospitality Research), and one is about chemistry (Journal of Computer-

Aided Molecular Design). The full text of every article is available on the web. The authors

supplied keyphrases for their articles. For the Email Messages corpus, we collected 311

email messages from six NRC employees. A university student created the keyphrases for the

messages. For the Aliweb corpus, we collected 90 web pages using the Aliweb search

engine, a public search engine provided by NEXOR.6 Aliweb has web-based fill-in form,

with a field for keyphrases, where people may enter URLs to add to Aliweb. The keyphrases

are stored in the Aliweb index, along with the URLs. For the NASA corpus, we collected 141

web pages from NASA’s Langley Research Center.7 Each page includes a list of keyphrases.

For the FIPS corpus, we gathered 35 web pages from the US government’s Federal Informa-

tion Processing Standards (FIPS).8 Each document includes a list of keyphrases. 

We would like our learning algorithms to be able to perform well even when the testing

data are significantly different from the training data. In a real-world application, it would be

inconvenient if the learning algorithm required re-training for each new type of document.

Therefore our experiments do not use a random split of the documents into training and test-

ing sets. Instead, we designed the experiments to test the ability of the learning algorithms to

Table 2: Some statistics for each of the five collections. 

Corpus Name
Number of 
Documents

Average Number of … ± Standard Deviation Percentage of 
Keyphrases in 

Full Text
Keyphrases per 

Document
Words per 
Keyphrase

Words per 
Document

Journal Articles 75 7.5 ± 2.8 1.6 ± 0.7 10,781 ± 7,807 81.6%

Email Messages 311 4.9 ± 4.3 1.8 ± 1.0 376 ± 561 97.9%

Aliweb Web Pages 90 6.0 ± 3.0 1.2 ± 0.5 949 ± 2603 69.0%

NASA Web Pages 141 4.7 ± 2.0 1.9 ± 0.9 466 ± 102 65.3%

FIPS Web Pages 35 9.0 ± 3.5 2.0 ± 1.1 7025 ± 6385 78.2%

6. The URL is http://www.nexor.com/public/aliweb/search/doc/form.html.

7. Available at http://tag-www.larc.nasa.gov/tops/tops_text.html.

8. Available at http://www.itl.nist.gov/div897/pubs/.
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generalize to new data. 

In our preliminary experiments, we found that the main factor influencing generalization

was the average length of the documents in the training set, compared to the testing set. In a

real-world application, it would be reasonable to have two different learned models, one for

short documents and one for long documents. As Table 3 shows, we selected part of the Jour-

nal Article corpus to train the learning algorithms to handle long documents and part of the

Email Message corpus to train the learning algorithms to handle short documents. During

testing, we used the training corpus that was most similar to the given testing corpus, with

respect to document lengths. 

The method for applying C4.5 to keyphrase extraction (Section 5) and the GenEx algo-

rithm (Section 7) were developed using only the training subsets of the Journal Article and

Email Message corpora (Table 3). The other three corpora were only acquired after the com-

pletion of the design of the method for applying C4.5 and the design of the GenEx algorithm.

This practice ensures that there is no risk that C4.5 and GenEx have been tuned to the testing

data. 

5. Applying C4.5 to Keyphrase Extraction

In the first set of experiments, we used the C4.5 decision tree induction algorithm (Quinlan,

1993) to classify phrases as positive or negative examples of keyphrases. In this section, we

describe the feature vectors, the settings we used for C4.5’s parameters, the bagging proce-

Table 3: The correspondence between testing and training data. 

Testing Corpus ↔ Corresponding Training Corpus

Name
Number of 
Documents

Name
Number of 
Documents

Journal Articles (Testing Subset) 20 ↔ Journal Article (Training Subset) 55

Email Messages (Testing Subset) 76 ↔ Email Messages (Training Subset) 235

Aliweb Web Pages 90 ↔ Email Messages (Training Subset) 235

NASA Web Pages 141 ↔ Email Messages (Training Subset) 235

FIPS Web Pages 35 ↔ Journal Article (Training Subset) 55
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dure, and the method for sampling the training data.

The task of supervised learning is to learn how to assign cases (or examples) to classes.

For keyphrase extraction, a case is a candidate phrase, which we wish to classify as a positive

or negative example of a keyphrase. We classify a case by examining its features. A feature

can be any property of a case that is relevant for determining the class of the case. C4.5 can

handle real-valued features, integer-valued features, and features with values that range over

an arbitrary, fixed set of symbols. C4.5 takes as input a set of training data, in which cases

are represented as feature vectors. In the training data, a teacher must assign a class to each

feature vector (hence supervised learning). C4.5 generates as output a decision tree that mod-

els the relationships among the features and the classes (Quinlan, 1993). 

A decision tree is a rooted tree in which the internal vertices are labelled with tests on

feature values and the leaf vertices are labelled with classes. The edges that leave an internal

vertex are labelled with the possible outcomes of the test associated with that vertex. For

example, a feature might be, “the number of words in the given phrase,” and a test on a fea-

ture value might be, “the number of words in the given phrase is less than two,” which can

have the outcomes “true” or “false”. A case is classified by beginning at the root of the tree

and following a path to a leaf in the tree, based on the values of the features of the case. The

label on the leaf is the predicted class for the given case. 

We converted the documents into sets of feature vectors by first making a list of all

phrases of one, two, or three consecutive non-stop words that appear in a given document,

with no intervening punctuation. We used the Iterated Lovins stemmer to find the stemmed

form of each of these phrases. For each unique stemmed phrase, we generated a feature vec-

tor, as described in Table 4. 

C4.5 has access to nine features (features 3 to 11) when building a decision tree. The

leaves of the tree predict class (feature 12). When a decision tree predicts that the class

of a vector is 1, then the phrase whole_phrase is a keyphrase, according to the tree. This
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phrase is suitable for output for a human reader. We used the stemmed form of the phrase,

stemmed_phrase, for evaluating the performance of the tree. In our preliminary experi-

ments, we evaluated 110 different features, before we settled on the features in Table 4. 

Table 5 shows the number of feature vectors that were generated for each corpus. In total,

we had more than 192,000 vectors for training and more than 168,000 vectors for testing.

The large majority of these vectors were negative examples of keyphrases (class 0).  

In a real-world application, the user would want to specify the desired number of output

keyphrases for a given document. However, a standard decision tree does not let the user con-

Table 4: A description of the feature vectors used by C4.5.

Name of Feature Description of Feature C4.5 Type

1 stemmed_phrase the stemmed form of a phrase, for matching with human-
generated phrases

ignore

2 whole_phrase the most frequent whole (unstemmed) phrase corresponding 
to stemmed_phrase, for output and for calculating features 
8 to 11

ignore

3 num_words_phrase the number of words in stemmed_phrase, ranging from 
one to three

continuous

4 first_occur_phrase the first occurrence of stemmed_phrase, normalized by 
dividing by the number of words in the document (including 
stop words)

continuous

5 first_occur_word the first occurrence of the earliest occurring single stemmed 
word in stemmed_phrase, normalized by dividing by the 
number of words in the document (including stop words)

continuous

6 freq_phrase the frequency of stemmed_phrase, normalized by dividing 
by the number of words in the document (including stop 
words)

continuous

7 freq_word the frequency of the most frequent single stemmed word in 
stemmed_phrase, normalized by dividing by the number 
of words in the document (including stop words)

continuous

8 relative_length the relative length of whole_phrase, calculated as the 
number of characters in whole_phrase, divided by the 
average number of characters in all candidate phrases

continuous

9 proper_noun is whole_phrase a proper noun, based on the capitalization 
of whole_phrase?

0, 1

10 final_adjective does whole_phrase end in a final adjective, based on the 
suffix of whole_phrase?

0, 1

11 common_verb does whole_phrase contain a common verb, based on a list 
of common verbs?

0, 1

12 class is stemmed_phrase a keyphrase, based on match with 
stemmed form of human-generated keyphrases?

0, 1
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trol the number of feature vectors that are classified as belonging in class 1. Therefore we ran

C4.5 with the -p option, which generates soft-threshold decision trees (Carter and Catlett,

1987; Quinlan, 1987, 1990, 1993). Soft-threshold decision trees can generate a probability

estimate for the class of each vector. For a given document, if the user specifies that K key-

phrases are desired, then we select the K vectors that have the highest estimated probability

of being in class 1. 

In addition to the -p option, we also used -c100 and -m1 (Quinlan, 1993). These two

options maximize the bushiness of the trees. In our preliminary experiments, we found that

these parameter settings appear to work well when used in conjunction with bagging. Bag-

ging involves generating many different decision trees and allowing them to vote on the clas-

sification of each example (Breiman, 1996a, 1996b; Quinlan, 1996). In general, decision tree

induction algorithms have low bias but high variance. Bagging multiple trees tends to

improve performance by reducing variance. Bagging appears to have relatively little impact

on bias. 

Because we used soft-threshold decision trees, we combined their probability estimates

by averaging them, instead of voting. In preliminary experiments with the training docu-

ments, we obtained good results by bagging 50 decision trees. Adding more trees had no sig-

nificant effect.

Table 5: The number of feature vectors for each corpus.

Train/Test Corpus Name
Number of 
Documents

Total Number 
of Vectors

Average 
Vectors Per 
Document

Percent 
Class 1

Training

Journal 55 158,240 2,877 0.20%

Email 235 34,378 146 2.44%

All 290 192,618 664 0.60%

Testing

Journal 20 23,751 1,188 0.53%

Email 76 11,065 146 2.40%

Aliweb 90 26,752 297 1.08%

NASA 141 38,920 276 1.15%

FIPS 35 67,777 1,936 0.33%

All 362 168,265 465 0.80%
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The standard approach to bagging is to randomly sample the training data, using sam-

pling with replacement (Breiman, 1996a, 1996b; Quinlan, 1996). In preliminary experiments

with the training data, we achieved good performance by training each of the 50 decision

trees with a random sample of 1% of the training data. 

The standard approach to bagging is to ignore the class when sampling, so the distribu-

tion of classes in the sample tends to correspond to the distribution in the training data as a

whole. In Table 5, we see that the positive examples constitute only 0.2% to 2.4% of the total

number of examples. To compensate for this, we modified the random sampling procedure so

that 50% of the sampled examples were in class 0 and the other 50% were in class 1. This

appeared to improve performance in preliminary experiments on the training data. This strat-

egy is called stratified sampling (Deming, 1978; Buntine, 1989; Catlett, 1991; Kubat et al.,

1998). Kubat et al. (1998) found that stratified sampling significantly improved the perfor-

mance of C4.5 on highly skewed data, but Catlett (1991) reported mixed results. 

Boosting is another popular technique for combining multiple decision trees (Freund and

Schapire, 1996; Quinlan, 1996; Maclin and Opitz, 1997). We chose to use bagging instead of

boosting, because the modifications to bagging that we use here (averaging soft-threshold

decision trees and stratified sampling) are simpler to apply to the bagging algorithm than to

the more complicated boosting algorithm. We believe that analogous modifications would be

required for boosting to perform well on this task. 

6. Experiment 1: Learning to Extract Keyphrases with C4.5

This section presents four experiments with C4.5. In Experiment 1A, we establish a baseline

for the performance of C4.5, using the configuration described in Section 5. We bag 50 trees,

generated by randomly sampling 1% of the training data, with equal numbers of samples

from the two classes (keyphrase and non-keyphrase). In Experiment 1B, we vary the number

of trees. In Experiment 1C, we vary the ratio of the classes. In Experiment 1D, we vary the

size of the random samples. 
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In the baseline configuration of C4.5, we bag 50 trees, where each tree is trained on a

random sample of 1% of the training data, with equal samples from both classes. The perfor-

mance is measured by the average precision for each corpus, when the desired number of

phrases is set to 5, 7, 9, 11, 13, and 15. The average precision for a corpus is the sum of the

average precision for each document, divided by the number of documents. The precision for

an individual document is the number of matches between the human-generated keyphrases

and the machine-generated keyphrases, divided by the desired number of phrases. Matches

are determined using the Iterated Lovins stemmer. 

Figure 1 shows the baseline performance of C4.5 at various cut-offs for the desired num-

ber of extracted keyphrases. The plots show the precision for the testing data only. It appears

that the e-mail model generalizes relatively well to the Aliweb and NASA corpora, but the

journal model does not generalize well to the FIPS corpus (see Table 3).9 

9. The increasing slope of the curve for the FIPS corpus appears to be a statistical anomaly. Figure 5 shows a flat-

ter slope for FIPS in Experiment 1C, in which we modify the stratified sampling procedure, although the slope

is still somewhat unusual. 

Figure 1: Experiment 1A: The baseline precision of C4.5. 
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Table 6 shows the time required to train and test the baseline configuration of C4.5. The

time includes generating the feature vectors and randomly sampling the vectors.10  

Table 7 shows the phrases selected by the baseline configuration of C4.5 for three arti-

cles from the journal article testing subset. In these three examples, the desired number of

phrases is set to nine. The phrases in bold match the author’s phrases, according to the Iter-

ated Lovins stemming algorithm.11 

Experiment 1B tests the hypothesis that bagging improves the performance of C4.5 on

the task of automatic keyphrase extraction. Figure 2 shows the precision when the desired

number of phrases is set to 5, 7, 9, 11, 13, and 15. The number of trees is set to 1, 25, and 50.

Table 6: Experiment 1A: Training and testing time for the baseline configuration of C4.5.

Train/Test Corpus Name
Number of 
Documents

Total Time
in Seconds *

Average Time
in Seconds **

Training
Journal 55 250 60

Email 235 89 33

Total Time
in Seconds †

Average Time
in Seconds ‡

Testing

Journal 20 37 1.9

Email 76 106 1.4

Aliweb 90 130 1.4

NASA 141 200 1.4

FIPS 35 86 2.5

* Total time for one corpus and all fifty trees in seconds.
** Average time for one corpus and one tree in seconds.
† Total time for one corpus and all fifty trees in seconds.
‡ Average time for one document and all fifty trees in seconds.

10. The decision tree routines were written by Quinlan (1993). We wrote the feature vector generation routines

and the random sampling routines. The code was carefully written for speed. All of the code was written in C

and executed on a Pentium II 233 running Windows NT 4.0.

11. The duplication of “probability” and “probabilities” in C4.5’s keyphrases for the first document is due to the

limitations of the Iterated Lovins stemming algorithm (see Table 1). Usually duplication of this kind is elimi-

nated during the formation of the feature vectors (see Section 5), since there is only one vector for each unique

stemmed phrase. 
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For four of the corpora, the precision tends to rise as the number of trees increases. The

exception is the FIPS corpus. As we noted for Experiment 1A, C4.5 has difficulty in general-

izing from the journal article training data to the FIPS testing data. 

In Table 8, we test the significance of this rising trend, using a paired t-test (Fraser, 1976;

Feelders and Verkooijen, 1995). The table shows that, when we look at the five testing col-

lections together, 50 trees are significantly more precise than 1 tree, when the desired num-

ber of phrases is set to 15. The only case in which 50 trees are significantly worse than 1 tree

is with the FIPS collection. 

Experiment 1C tests the hypothesis that stratified sampling (Deming, 1978; Buntine,

1989; Catlett, 1991; Kubat et al., 1998) can help C4.5 handle the skewed class distribution.

Figure 3 shows the precision when the percentage of examples in class 1 (positive examples

of keyphrases) is set to 1%, 25%, and 50%. For at least three of the corpora, precision tends

to fall as the percentage increases. 

Table 7: Experiment 1A: Examples of the selected phrases for three articles. 

Title: “The Base Rate Fallacy Myth”

Author’s 
Keyphrases:

base rate fallacy, Bayes’ theorem, decision making, ecological validity, ethics, 
fallacy, judgment, probability.

C4.5’s Top Nine
Keyphrases:

judgments, base rates, base rate fallacy, decision making, posteriors, fallacy, 
probability, rate fallacy, probabilities.

Precision: 0.556

Title: “Brain Rhythms, Cell Assemblies and Cognition: Evidence from the Processing 
of Words and Pseudowords”

Author’s 
Keyphrases:

brain theory, cell assembly, cognition, event related potentials, ERP, electroen-
cephalograph, EEG, gamma band, Hebb, language, lexical processing, magne-
toencephalography, MEG, psychophysiology, periodicity, power spectral 
analysis, synchrony. 

C4.5’s Top Nine
Keyphrases:

cell assemblies, cognitive, responses, assemblies, cognitive processing, brain 
functions, word processing, oscillations, cell.

Precision: 0.111

Title: “On the Evolution of Consciousness and Language”

Author’s 
Keyphrases:

consciousness, language, plans, motivation, evolution, motor system.

C4.5’s Top Nine
Keyphrases:

psychology, language, consciousness, behavior, evolution, cognitive psychol-
ogy, Bridgeman, organization, modern cognitive psychology.

Precision: 0.333
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Table 8: Experiment 1B: A comparison of 50 trees with 1 tree. 

Corpus Name
Number of 
Documents

Number of 
Phrases

Average Precision ± Standard Deviation Significant 
with 95% 

Confidence1 Tree 50 Trees 50 - 1

Journal 20
5 0.190 ± 0.229 0.220 ± 0.182 0.030 ± 0.218 NO

15 0.107 ± 0.098 0.140 ± 0.078 0.033 ± 0.085 NO

Email 76
5 0.147 ± 0.151 0.176 ± 0.160 0.029 ± 0.141 NO

15 0.098 ± 0.079 0.117 ± 0.099 0.018 ± 0.060 YES

Aliweb 90
5 0.191 ± 0.182 0.187 ± 0.166 -0.004 ± 0.164 NO

15 0.102 ± 0.076 0.119 ± 0.082 0.017 ± 0.057 YES

NASA 141
5 0.119 ± 0.137 0.138 ± 0.129 0.018 ± 0.133 NO

15 0.078 ± 0.066 0.094 ± 0.069 0.016 ± 0.048 YES

FIPS 35
5 0.109 ± 0.101 0.057 ± 0.092 -0.051 ± 0.148 YES

15 0.111 ± 0.067 0.080 ± 0.062 -0.031 ± 0.078 YES

All 362
5 0.146 ± 0.158 0.155 ± 0.151 0.009 ± 0.151 NO

15 0.093 ± 0.074 0.106 ± 0.080 0.013 ± 0.060 YES

Figure 2: Experiment 1B: The effect of varying the number of trees on precision.
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Table 9 shows that, when we look at the five testing collections together, there is a signif-

icant drop in precision when 50% of the samples are positive examples, compared to 1%.

Only the email collection appears to benefit from balanced sampling of the classes. We must

Table 9:  Experiment 1C: A comparison of 1% positive examples with 50% positive examples. 

Corpus Name
Number of 
Documents

Number of 
Phrases

Average Precision ± Standard Deviation Significant 
with 95% 

Confidence1% Class 1 50% Class 1 50 - 1

Journal 20
5 0.280 ± 0.255 0.220 ± 0.182 -0.060 ± 0.216 NO

15 0.170 ± 0.113 0.140 ± 0.078 -0.030 ± 0.103 NO

Email 76
5 0.161 ± 0.160 0.176 ± 0.160 0.016 ± 0.145 NO

15 0.100 ± 0.081 0.117 ± 0.099 0.017 ± 0.055 YES

Aliweb 90
5 0.227 ± 0.190 0.187 ± 0.166 -0.040 ± 0.135 YES

15 0.120 ± 0.074 0.119 ± 0.082 -0.001 ± 0.048 NO

NASA 141
5 0.155 ± 0.159 0.138 ± 0.129 -0.017 ± 0.138 NO

15 0.092 ± 0.068 0.094 ± 0.069 0.001 ± 0.045 NO

FIPS 35
5 0.154 ± 0.162 0.057 ± 0.092 -0.097 ± 0.184 YES

15 0.141 ± 0.066 0.080 ± 0.062 -0.061 ± 0.063 YES

All 362
5 0.181 ± 0.177 0.155 ± 0.151 -0.026 ± 0.151 YES

15 0.110 ± 0.078 0.106 ± 0.080 -0.004 ± 0.058 NO

Figure 3: Experiment 1C: The effect of varying the percentage of class 1 on precision. 
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reject the hypothesis that stratified sampling (Deming, 1978; Buntine, 1989; Catlett, 1991;

Kubat et al., 1998) is useful for our data. Although our preliminary experiments with the

training data suggested that stratified sampling would be beneficial, the hypothesis is not

supported by the testing data. 

Experiment 1D tests the hypothesis that sampling 1% of the training data results in better

precision than larger samples. Figure 4 shows the precision when the sample size is 1%,

25%, and 50%. For three of the copora, increasing the sample size tends to decrease the pre-

cision. The exceptions are the email message corpus and the FIPS web page corpus. 

In Table 10, we test the significance of this trend, using a paired t-test. The table shows

that, when we look at the five testing collections together, a 1% sample rate yields better pre-

cision than a 50% sample rate, when the desired number of phrases is set to 15. This supports

the hypothesis that a relatively small sample size is better for bagging than a large sample.

This is expected, since bagging works best when the combined models are heterogeneous

Figure 4: Experiment 1D: The effect of varying the sample rate on precision. 
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(Breiman, 1996a, 1996b; Quinlan, 1996). Increasing the sample size tends to make the mod-

els more homogenous. 

7. GenEx: A Hybrid Genetic Algorithm for Keyphrase Extraction

We have experimented with many ways of applying C4.5 to automatic keyphrase extraction.

The preceding section presented a few of these experiments. During the course of our exper-

imentation, we came to believe that a tailor-made algorithm for learning to extract key-

phrases might be able to achieve better precision than a general-purpose learning algorithm

such as C4.5. As we discuss in Section 10, the main insight that we gained from working

with C4.5 was that we might achieve better performance in this domain if we could find a

way to embed specialized procedural domain knowledge into our keyphrase extraction algo-

rithm. This motivated us to develop the GenEx algorithm. 

GenEx has two components, the Genitor genetic algorithm (Whitley, 1989) and the

Extractor keyphrase extraction algorithm (Turney, 1997, 1999). Extractor takes a document

as input and produces a list of keyphrases as output. Extractor has twelve parameters that

determine how it processes the input text. In GenEx, the parameters of Extractor are tuned by

Table 10: Experiment 1D: A comparison of 1% sample rate with 50% sample rate. 

Corpus Name
Number of 
Documents

Number of 
Phrases

Average Precision ± Standard Deviation Significant 
with 95% 

Confidence
1% 

Sample Rate
50% 

Sample Rate
50 - 1

Journal 20
5 0.220 ± 0.182 0.160 ± 0.139 -0.060 ± 0.131 NO

15 0.140 ± 0.078 0.140 ± 0.094 0.000 ± 0.061 NO

Email 76
5 0.176 ± 0.160 0.187 ± 0.161 0.011 ± 0.146 NO

15 0.117 ± 0.099 0.113 ± 0.102 -0.004 ± 0.062 NO

Aliweb 90
5 0.187 ± 0.166 0.153 ± 0.144 -0.033 ± 0.168 NO

15 0.119 ± 0.082 0.094 ± 0.071 -0.025 ± 0.064 YES

NASA 141
5 0.138 ± 0.129 0.126 ± 0.136 -0.011 ± 0.143 NO

15 0.094 ± 0.069 0.079 ± 0.057 -0.014 ± 0.055 YES

FIPS 35
5 0.057 ± 0.092 0.091 ± 0.112 0.034 ± 0.133 NO

15 0.080 ± 0.062 0.099 ± 0.059 0.019 ± 0.050 YES

All 362
5 0.155 ± 0.151 0.144 ± 0.144 -0.010 ± 0.150 NO

15 0.106 ± 0.080 0.095 ± 0.076 -0.011 ± 0.060 YES
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the Genitor genetic algorithm (Whitley, 1989), to maximize performance (fitness) on training

data. Genitor is used to tune Extractor, but Genitor is no longer needed once the training pro-

cess is complete. When we know the best parameter values, we can discard Genitor. Thus the

learning system is called GenEx (Genitor plus Extractor) and the trained system is called

Extractor (GenEx minus Genitor). 

7.1 Extractor

What follows is a conceptual description of the Extractor algorithm. For clarity, we describe

Extractor at an abstract level that ignores efficiency considerations. That is, the actual

Extractor software is essentially an efficient implementation of the following algorithm.12 In

the following, the twelve parameters appear in small capitals (see Table 11 for a list of the

parameters). There are ten steps to the Extractor algorithm: 

1. Find Single Stems: Make a list of all of the words in the input text. Drop words with less

than three characters. Drop stop words, using a given stop word list. Convert all remain-

ing words to lower case. Stem the words by truncating them at STEM_LENGTH characters. 

The advantages of this simple form of stemming (stemming by truncation) are speed and

flexibility. Stemming by truncation is much faster than either the Lovins (1968) or Porter

(1980) stemming algorithms. The aggressiveness of the stemming can be adjusted by chang-

ing STEM_LENGTH. This gives Genitor control over the level of aggressiveness. 

2. Score Single Stems: For each unique stem, count how often the stem appears in the text

and note when it first appears. If the stem “evolut” first appears in the word “Evolution”,

and “Evolution” first appears as the tenth word in the text, then the first appearance of

“evolut” is said to be in position 10. Assign a score to each stem. The score is the number

of times the stem appears in the text, multiplied by a factor. If the stem first appears

12. Extractor is written in C. A demonstration version of Extractor is available at http://extractor.iit.nrc.ca/. The

demonstration version has been trained already; it does not allow the user to make any adjustments. 
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before FIRST_LOW_THRESH, then multiply the frequency by FIRST_LOW_FACTOR. If the

stem first appears after FIRST_HIGH_THRESH, then multiply the frequency by

FIRST_HIGH_FACTOR. 

Typically FIRST_LOW_FACTOR is greater than one and FIRST_HIGH_FACTOR is less than one.

Thus, early, frequent stems receive a high score and late, rare stems receive a low score. This

gives Genitor control over the weight of early occurrence versus the weight of frequency. 

3. Select Top Single Stems: Rank the stems in order of decreasing score and make a list of

the top NUM_WORKING single stems. 

Cutting the list at NUM_WORKING, as opposed to allowing the list to have an arbitrary length,

improves the efficiency of Extractor. It also acts as a filter for eliminating lower quality

stems. 

4. Find Stem Phrases: Make a list of all phrases in the input text. A phrase is defined as a

sequence of one, two, or three words that appear consecutively in the text, with no inter-

vening stop words or punctuation. Stem each phrase by truncating each word in the

phrase at STEM_LENGTH characters. 

In our corpora, phrases of four or more words are relatively rare. Therefore Extractor only

considers phrases of one, two, or three words. 

5. Score Stem Phrases: For each stem phrase, count how often the stem phrase appears in

the text and note when it first appears. Assign a score to each phrase, exactly as in step 2,

using the parameters FIRST_LOW_FACTOR, FIRST_LOW_THRESH, FIRST_HIGH_FACTOR, and

FIRST_HIGH_THRESH. Then make an adjustment to each score, based on the number of

stems in the phrase. If there is only one stem in the phrase, do nothing. If there are two

stems in the phrase, multiply the score by FACTOR_TWO_ONE. If there are three stems in

the phrase, multiply the score by FACTOR_THREE_ONE. 

Typically FACTOR_TWO_ONE and FACTOR_THREE_ONE are greater than one, so this adjust-
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ment will increase the score of longer phrases. A phrase of two or three stems is necessarily

never more frequent than the most frequent single stem contained in the phrase. The factors

FACTOR_TWO_ONE and FACTOR_THREE_ONE are designed to boost the score of longer

phrases, to compensate for the fact that longer phrases are expected to otherwise have lower

scores than shorter phrases. 

6. Expand Single Stems: For each stem in the list of the top NUM_WORKING single stems,

find the highest scoring stem phrase of one, two, or three stems that contains the given

single stem. The result is a list of NUM_WORKING stem phrases. Keep this list ordered by

the scores calculated in step 2. 

Now that the single stems have been expanded to stem phrases, we no longer need the scores

that were calculated in step 5. That is, the score for a stem phrase (step 5) is now replaced by

the score for its corresponding single stem (step 2). The reason is that the adjustments to the

score that were introduced in step 5 are useful for expanding the single stems to stem

phrases, but they are not useful for comparing or ranking stem phrases. 

7. Drop Duplicates: The list of the top NUM_WORKING stem phrases may contain dupli-

cates. For example, two single stems may expand to the same two-word stem phrase.

Delete duplicates from the ranked list of NUM_WORKING stem phrases, preserving the

highest ranked phrase. 

For example, suppose that the stem “evolu” (e.g., “evolution” truncated at five characters)

appears in the fifth position in the list of the top NUM_WORKING single stems and “psych”

(e.g., “psychology” truncated at five characters) appears in the tenth position. When the sin-

gle stems are expanded to stem phrases, we might find that “evolu psych” (e.g., “evolution-

ary psychology” truncated at five characters) appears in the fifth and tenth positions in the

list of stem phrases. In this case, we delete the phrase in the tenth position. If there are dupli-

cates, then the list now has fewer than NUM_WORKING stem phrases. 

8. Add Suffixes: For each of the remaining stem phrases, find the most frequent corre-
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sponding whole phrase in the input text. For example, if “evolutionary psychology”

appears ten times in the text and “evolutionary psychologist” appears three times, then

“evolutionary psychology” is the more frequent corresponding whole phrase for the stem

phrase “evolu psych”. When counting the frequency of whole phrases, if a phrase has an

ending that indicates a possible adjective, then the frequency for that whole phrase is set

to zero. An ending such as “al”, “ic”, “ible”, etc., indicates a possible adjective. Adjec-

tives in the middle of a phrase (for example, the second word in a three-word phrase) are

acceptable; only phrases that end in adjectives are penalized. Also, if a phrase contains a

verb, the frequency for that phrase is set to zero. To check for verbs, we use a list of com-

mon verbs. A word that might be either a noun or a verb is included in this list only when

it is much more common for the word to appear as a verb than as a noun. 

For example, suppose the input text contains “manage”, “managerial”, and “management”. If

STEM_LENGTH is, say, five, the stem “manag” will be expanded to “management” (a noun),

because the frequency of “managerial” will be set to zero (because it is an adjective, ending

in “al”) and the frequency of “manage” will be set to zero (because it is a verb, appearing in

the list of common verbs). Although “manage” and “managerial” would not be output, their

presence in the input text helps to boost the score of the stem “manag” (as measured in

step 2), and thereby increase the likelihood that “management” will be output. 

9. Add Capitals: For each of the whole phrases (phrases with suffixes added), find the best

capitalization, where best is defined as follows. For each word in a phrase, find the capi-

talization with the least number of capitals. For a one-word phrase, this is the best capi-

talization. For a two-word or three-word phrase, this is the best capitalization, unless the

capitalization is inconsistent. The capitalization is said to be inconsistent when one of

the words has the capitalization pattern of a proper noun but another of the words does

not appear to be a proper noun (e.g., “Turing test”). When the capitalization is inconsis-

tent, see whether it can be made consistent by using the capitalization with the second
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lowest number of capitals (e.g., “Turing Test”). If it cannot be made consistent, use the

inconsistent capitalization. If it can be made consistent, use the consistent capitalization. 

For example, given the phrase “psychological association”, the word “association” might

appear in the text only as “Association”, whereas the word “psychological” might appear in

the text as “PSYCHOLOGICAL”, “Psychological”, and “psychological”. Using the least

number of capitals, we get “psychological Association”, which is inconsistent. However, it

can be made consistent, as “Psychological Association”. 

10. Final Output: We now have an ordered list of mixed-case (upper and lower case, if

appropriate) phrases with suffixes added. The list is ordered by the scores calculated in

step 2. That is, the score of each whole phrase is based on the score of the highest scoring

single stem that appears in the phrase. The length of the list is at most NUM_WORKING,

and is likely less, due to step 7. We now form the final output list, which will have at

most NUM_PHRASES phrases. We go through the list of phrases in order, starting with the

top-ranked phrase, and output each phrase that passes the following tests, until either

NUM_PHRASES phrases have been output or we reach the end of the list. The tests are (1)

the phrase should not have the capitalization of a proper noun, unless the flag

SUPPRESS_PROPER is set to 0 (if 0 then allow proper nouns; if 1 then suppress proper

nouns); (2) the phrase should not have an ending that indicates a possible adjective; (3)

the phrase should be longer than MIN_LENGTH_LOW_RANK, where the length is measured

by the ratio of the number of characters in the candidate phrase to the number of charac-

ters in the average phrase, where the average is calculated for all phrases in the input text

that consist of one to three consecutive non-stop words; (4) if the phrase is shorter than

MIN_LENGTH_LOW_RANK, it may still be acceptable, if its rank in the list of candidate

phrases is better than (closer to the top of the list than) MIN_RANK_LOW_LENGTH; (5) if

the phrase fails both tests (3) and (4), it may still be acceptable, if its capitalization pat-

tern indicates that it is probably an abbreviation; (6) the phrase should not contain any
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words that are most commonly used as verbs; (7) the phrase should not match any

phrases in a given list of stop phrases (where “match” means equal strings, ignoring case,

but including suffixes). 

That is, a phrase must pass tests (1), (2), (6), (7), and at least one of tests (3), (4), and (5). 

Although our experimental procedure does not consider capitalization or suffixes when

comparing machine-generated keyphrases to human-generated keyphrases, steps 8 and 9 are

still useful, because some of the screening tests in step 10 are based on capitalization and

suffixes. Of course, steps 8 and 9 are essential when the output is for human readers. 

7.2 Genitor

A genetic algorithm may be viewed as a method for optimizing a string of bits, using tech-

niques that are inspired by biological evolution. A genetic algorithm works with a set of bit

strings, called a population of individuals. The initial population is usually randomly gener-

ated. New individuals (new bit strings) are created by randomly changing existing individu-

als (this operation is called mutation) and by combining substrings from parents to make new

children (this operation is called crossover). Each individual is assigned a score (called its

fitness) based on some measure of the quality of the bit string, with respect to a given task.

Fitter individuals get to have more children than less fit individuals. As the genetic algorithm

runs, new individuals tend to be increasingly fit, up to some asymptote. 

Genitor is a steady-state genetic algorithm (Whitley, 1989), in contrast to many other

genetic algorithms, such as Genesis (Grefenstette 1983, 1986), which are generational.13 A

generational genetic algorithm updates its entire population in one batch, resulting in a

sequence of distinct generations. A steady-state genetic algorithm updates its population one

individual at a time, resulting in a continuously changing population, with no distinct gener-

ations. Typically a new individual replaces the least fit individual in the current population.

13. The source code for Genitor (written in C) is available at ftp://ftp.cs.colostate.edu/pub/GENITOR.tar. 
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Whitley (1989) suggests that steady-state genetic algorithms tend to be more aggressive

(they have greater selective pressure) than generational genetic algorithms. 

7.3 GenEx

The parameters in Extractor are set using the standard machine learning paradigm of super-

vised learning. The algorithm is tuned with a dataset, consisting of documents paired with

target lists of keyphrases. The dataset is divided into training and testing subsets. The learn-

ing process involves adjusting the parameters to maximize the match between the output of

Extractor and the target keyphrase lists, using the training data. The success of the learning

process is measured by examining the match using the testing data. 

We assume that the user sets the value of NUM_PHRASES, the desired number of phrases,

to a value between five and fifteen. We then set NUM_WORKING to . The

remaining ten parameters are set by Genitor. Genitor uses a binary string of 72 bits to repre-

sent the ten parameters, as shown in Table 11. We run Genitor with a population size of 50

for 1050 trials (these are default settings). Each trial consists of running Extractor with the

parameter settings specified in the given binary string, processing the entire training set. The

fitness measure for the binary string is based on the average precision for the whole training

set. The final output of Genitor is the highest scoring binary string. Ties are broken by choos-

ing the earlier string. 

We first tried to use the average precision on the training set as the fitness measure, but

GenEx discovered that it could achieve high average precision by adjusting the parameters so

that less than NUM_PHRASES phrases were output. This is not desirable, so we modified the

fitness measure to penalize GenEx when less than NUM_PHRASES phrases were output:

(1)

(2)

(3)

(4)

5 NUM_PHRASES⋅

total_matches total number of matches between GenEx and human=

total_machine_phrases total number of phrases output by GenEx=

precision total_matches total_machine_phrases⁄=

num_docs number of documents in training set=
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(5)

(6)

(7)

The penalty factor varies between 0 and 1. It has no effect (i.e., it is 1) when the number of

phrases output by GenEx equals the desired number of phrases. The penalty grows (i.e., it

approaches 0) with the square of the gap between the desired number of phrases and the

actual number of phrases. Preliminary experiments on the training data confirmed that this

fitness measure led GenEx to find parameter values with high average precision while ensur-

ing that NUM_PHRASES phrases were output.

Since STEM_LENGTH is modified by Genitor during the GenEx learning process, the fit-

ness measure used by Genitor is not based on stemming by truncation. If the fitness measure

were based on stemming by truncation, a change in STEM_LENGTH would change the appar-

ent fitness, even if the actual output keyphrase list remained constant. Therefore fitness is

measured with the Iterated Lovins stemmer. 

We ran Genitor with a Selection Bias of 2.0 and a Mutation Rate of 0.2. These are the

Table 11: The twelve parameters of Extractor, with types and ranges. 

Parameter 
Number

Parameter Name
Parameter 
Type

Parameter Range Number of Bits

1 NUM_PHRASES * integer [5, 15] 0 *

2 NUM_WORKING † integer [25, 75] 0 †

3 FACTOR_TWO_ONE real [1, 3] 8

4 FACTOR_THREE_ONE real [1, 5] 8

5 MIN_LENGTH_LOW_RANK real [0.3, 3.0] 8

6 MIN_RANK_LOW_LENGTH integer [1, 20] 5

7 FIRST_LOW_THRESH integer [1, 1000] 10

8 FIRST_HIGH_THRESH integer [1, 4000] 12

9 FIRST_LOW_FACTOR real [1, 15] 8

10 FIRST_HIGH_FACTOR real [0.01, 1.0] 8

11 STEM_LENGTH integer [1, 10] 4

12 SUPPRESS_PROPER boolean [0, 1] 1

Total Number of Bits in Binary String: 72

* This parameter is set by the user to the desired value.
† This parameter is set to five times NUM_PHRASES.

total_desired num_docs NUM_PHRASES⋅=

penalty total_machine_phrases total_desired⁄( )2
=

fitness precision penalty⋅=
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default settings for Genitor. We used the Adaptive Mutation operator and the Reduced Surro-

gate Crossover operator (Whitley, 1989). Adaptive Mutation determines the appropriate level

of mutation for a child according to the hamming distance between its two parents; the less

the difference, the higher the mutation rate. Reduced Surrogate Crossover first identifies all

positions in which the parent strings differ. Crossover points are only allowed to occur in

these positions. 

A comparison of Extractor with the feature vectors we used with C4.5 shows that GenEx

and C4.5 are learning with essentially the same feature sets. The two algorithms have access

to the same information, but they learn different kinds of models of keyphrases. Here are

some of the more significant differences between GenEx and C4.5 (as we have used it here): 

1. Given a set of phrases with a shared single-word stem (for example, the set of phrases

{“learning”, “machine learning”, “learnability”} shares the single-word stem “learn”),

GenEx tends to choose the best member of the set, rather than choosing the whole set.

GenEx first identifies the shared single-word stem (steps 1 to 3) and then looks for the

best representative phrase in the set (steps 4 to 6). C4.5 tends to choose several members

from the set, if it chooses any of them.14 

2. GenEx can adjust the aggressiveness of the stemming, by adjusting STEM_LENGTH. C4.5

must take the stems that are given in the training data.15 

3. C4.5 is designed to yield high accuracy. GenEx is designed to yield high precision for a

given NUM_PHRASES. High precision does not necessarily correspond to high accuracy. 

4. C4.5 uses the same model (the same set of decision trees) for all values of

14. It would be possible to add a post-processing step that winnows the phrases selected by C4.5, but this would

be a step down the path that leads from the general-purpose C4.5 algorithm to the custom-made GenEx algo-

rithm. See the discussion in Section 10. 

15. Again, it would be possible to adjust the stemming procedure externally, by cross-validation, but this is

another step down the path that leads from C4.5 to GenEx.
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NUM_PHRASES. With C4.5, We select the top NUM_PHRASES most probable feature vec-

tors, but our estimate of probability is not sensitive to the value of NUM_PHRASES. On the

other hand, Genitor tunes Extractor differently for each desired value of NUM_PHRASES. 

5. GenEx might output less than the desired number of phrases, NUM_PHRASES, but C4.5 (as

we use it here) always generates exactly NUM_PHRASES phrases. Therefore, in the follow-

ing experiments, performance is measured by the average precision, where precision is

defined by (8), not by (9). Equation (8) ensures that GenEx cannot spuriously boost its

score by generating fewer phrases than the user requests.16 

(8)

(9)

8. Experiment 2: Learning to Extract Keyphrases with GenEx

This set of experiments compares GenEx to C4.5. In Figure 5, we compare GenEx to both

the baseline configuration of C4.5 (Experiment 1A) and the best configuration of C4.5

(Experiment 1C). It is not quite fair to GenEx to use the best configuration of C4.5, because

we only know that it is the best by looking at the testing data, but GenEx does not have the

advantage of any information from the testing data. However, the performance of GenEx is

good enough that we can afford to be generous to C4.5. 

Figure 5 shows the average precision on each testing corpus, with the desired number of

phrases set to 5, 7, 9, 11, 13, and 15. In Table 12, we test the significance of the difference

between GenEx and the best configuration of C4.5. The table shows that, when we look at

the five testing collections together, GenEx is significantly more precise. There is no case in

which the performance of GenEx is below the performance of C4.5.  

Table 13 shows the training and testing time for GenEx. For ease of comparison, we have

16. If GenEx does generate fewer than NUM_PHRASES phrases, then we could randomly select further phrases

until we have NUM_PHRASES phrases. Thus (8) does not misrepresent the performance of GenEx. Note that we

do not use the fitness measure (7) to evaluate the performance of GenEx. 

precision number of matches desired number of machine-generated phrases⁄=

precision number of matches actual number of machine-generated phrases⁄=
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reproduced the comparable times from Table 6. Unlike C4.5, GenEx was trained separately

for each of the six values of NUM_PHRASES, 5, 7, 9, 11, 13, and 15. In comparison with C4.5,

Table 12: A comparison of GenEx (Experiment 2) with C4.5 (Experiment 1C). 

Corpus Name
Number of 
Documents

Number of 
Phrases

Average Precision ± Standard Deviation Significant 
with 95% 

ConfidenceGenEx C4.5 (1C) GenEx - C4.5

Journal 20
5 0.290 ± 0.247 0.280 ± 0.255 0.010 ± 0.137 NO

15 0.177 ± 0.130 0.170 ± 0.113 0.007 ± 0.061 NO

Email 76
5 0.234 ± 0.205 0.161 ± 0.160 0.074 ± 0.166 YES

15 0.122 ± 0.105 0.100 ± 0.081 0.022 ± 0.073 YES

Aliweb 90
5 0.264 ± 0.177 0.227 ± 0.190 0.038 ± 0.185 NO

15 0.122 ± 0.077 0.120 ± 0.074 0.002 ± 0.077 NO

NASA 141
5 0.206 ± 0.172 0.155 ± 0.159 0.051 ± 0.136 YES

15 0.118 ± 0.080 0.092 ± 0.068 0.026 ± 0.068 YES

FIPS 35
5 0.286 ± 0.170 0.154 ± 0.162 0.131 ± 0.222 YES

15 0.164 ± 0.078 0.141 ± 0.066 0.023 ± 0.081 NO

All 362
5 0.239 ± 0.187 0.181 ± 0.177 0.058 ± 0.167 YES

15 0.128 ± 0.089 0.110 ± 0.078 0.018 ± 0.073 YES

Figure 5: A comparison of GenEx (Experiment 2) with C4.5 (Experiments 1A and 1C). 
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GenEx is much slower to train, but also much faster after it has been trained. (The same com-

puter was used for timing C4.5 and GenEx.) 

Table 14 presents some examples of the phrases selected by GenEx, when NUM_PHRASES

is set to nine. Matches with the authors (according to the Iterated Lovins stemming algo-

rithm) are in bold. 

9. Experiment 3: Human Evaluation of GenEx Keyphrases

It is not obvious whether a precision of, say, 29% for five phrases is good or bad. We believe

that it is useful to know that one algorithm has a precision of 29% (for a given corpus and a

given desired number of phrases) while another algorithm has a precision of 15% (for the

same corpus and the same number of phrases), but a precision of 29% has no significance by

itself. What we would really like to know is, what percentage of the keyphrases generated by

GenEx are acceptable to a human reader? The following experiment suggests that the answer

to this question is that, on average, about 80% of the keyphrases extracted by GenEx are

acceptable to a human reader.

Table 13: Training and testing time for GenEx and C4.5.

Train/Test
Corpus 
Name

Number of 
Documents

Total Time in 
Hours:Minutes:Seconds *

Average Time in 
Hours:Minutes:Seconds **

GenEx C4.5 GenEx C4.5

Training
Journal 55 48:28:03 00:04:10 08:04:40 00:04:10

Email 235 14:54:15 00:01:29 02:29:02 00:01:29

Total Time in Seconds † Average Time in Seconds ‡

GenEx C4.5 GenEx C4.5

Testing

Journal 20 5 37 0.25 1.9

Email 76 4 106 0.05 1.4

Aliweb 90 6 130 0.07 1.4

NASA 141 8 200 0.06 1.4

FIPS 35 12 86 0.34 2.5

* Total time for one corpus and all six values of NUM_PHRASES in hours:minutes:seconds.
** Average time for one corpus and one value of NUM_PHRASES in hours:minutes:seconds.
† Total time for one corpus and one value of NUM_PHRASES in seconds.
‡ Average time for one document and one value of NUM_PHRASES in seconds.



Learning Algorithms for Keyphrase Extraction

37

We created an on-line demonstration of GenEx on the web. The demonstration allows the

user to enter any URL for processing. The software then downloads the HTML at the given

URL and sends it to Extractor. Extractor uses the parameter values that were learned from

the training sets discussed here. For web pages with less than 3000 words, Extractor used the

parameters learned from the Email Messages corpus. For web pages with 3000 words or

more, Extractor used the parameters learned from the Journal Article corpus. The keyphrases

are shown to the user, who may then rate each keyphrase as “good” or “bad”. Some or all

keyphrases may be left unrated (we call this “no opinion”). The number of keyphrases is

fixed at seven, to keep the interface simple. Part of the interface is shown in Figure 6. 

Over a seven-month period, visitors to our web site rated keyphrases generated from 385

different web pages. For this experiment, we deleted from our log of ratings all ratings by

NRC employees (who may be biased towards Extractor) and all ratings of web pages in lan-

guages other than English. (Extractor 5.0, the current version at the time of writing, works

Table 14: Experiment 2: Examples of the selected phrases for three articles from Psycoloquy. 

Title: “The Base Rate Fallacy Myth”

Author’s 
Keyphrases:

base rate fallacy, Bayes’ theorem, decision making, ecological validity, ethics, 
fallacy, judgment, probability.

GenEx’s Top Nine
Keyphrases:

base rates, judgments, probability, decision, base rate fallacy, prior, experi-
ments, decision making, probabilistic information. 

Precision: 0.444

Title: “Brain Rhythms, Cell Assemblies and Cognition: Evidence from the Processing 
of Words and Pseudowords”

Author’s 
Keyphrases:

brain theory, cell assembly, cognition, event related potentials, ERP, electroen-
cephalograph, EEG, gamma band, Hebb, language, lexical processing, magne-
toencephalography, MEG, psychophysiology, periodicity, power spectral 
analysis, synchrony. 

GenEx’s Top Nine
Keyphrases:

neurons, pseudowords, responses, cell assemblies, ignition, activation, brain, 
cognitive processing, gamma-band responses. 

Precision: 0.000

Title: “On the Evolution of Consciousness and Language”

Author’s 
Keyphrases:

consciousness, language, plans, motivation, evolution, motor system.

GenEx’s Top Nine
Keyphrases:

plans, consciousness, language, planning, psychology, behavior, memory, cog-
nitive psychology, plan-executing. 

Precision: 0.333
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with documents in English, French, German, and Japanese.) We were left with evaluations

for keyphrases from 267 web pages, as summarized in Table 15.

We interpret the data as supporting the hypothesis that about 80% of the keyphrases are

acceptable, on average (acceptable meaning not bad). The voters were anonymous (we have

only their IP addresses) and self-selected. There was no reward for voting and no reason for

giving false information. The only instructions to the voters were the words that are dis-

played in Figure 6. 

Table 15: Human evaluation of automatically generated keyphrases for web pages.

Number of Voters: 205

Number of Documents: 267

Number of Keyphrases: 1869

Maximum Documents per Voter: 5

Good: 1159 62.0%

Bad: 339 18.1%

No Opinion: 371 19.9%

Acceptable (Good + No Opinion): 1530 81.9%

Figure 6: This is an illustration of the on-line interface to Extractor. In this example, the user 

has entered a URL and the resulting keyphrases are displayed. The user may rate the quality 

of the keyphrases as “good” or “bad”. It is not necessary to rate all or any of the keyphrases. 
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10. Discussion

We have presented two approaches to the task of learning to extract keyphrases from text.

The first approach was to apply the C4.5 decision tree induction algorithm (Quinlan, 1993),

using soft-thresholds (Carter and Catlett, 1987; Quinlan, 1987, 1990, 1993), bagging

(Breiman, 1996a, 1996b; Quinlan, 1996) and stratified sampling (Deming, 1978; Buntine,

1989; Catlett, 1991; Kubat et al., 1998). The experiments support the claim that bagging is

helpful for this task, but stratified sampling is not helpful. 

Our experience with C4.5 led us to suspect that a custom-designed algorithm might per-

form better than the general-purpose C4.5 algorithm. Our second approach was to use the

Genitor genetic algorithm (Whitley, 1989) to tune the parameters in a special-purpose,

parameterized keyphrase extraction algorithm (Extractor). We presented the GenEx algo-

rithm and experiments that support the claim that GenEx performs better than C4.5. 

C4.5 has become a standard benchmark in machine learning research for evaluating the

performance of supervised classification algorithms. We believe that a thorough effort to

apply C4.5, using nine different configurations, is more significant and interesting than a

cursory examination of several alternative machine learning algorithms.

One way to contrast C4.5 (as we used it here) and GenEx is to compare how they use

domain knowledge. There are two types of domain knowledge implicit in our use of C4.5.

The design of the feature vectors (Table 4) clearly involves a significant amount of domain

knowledge. The use of soft-thresholds, bagging, and stratified sampling incorporates another

kind of domain knowledge. We can characterize the first type of domain knowledge as

declarative and the second type as procedural. Similarly, the GenEx algorithm embodies

both declarative and procedural domain knowledge. C4.5 and GenEx embody essentially the

same declarative knowledge, about the kinds of features that are relevant for detecting key-

phrases, but GenEx contains much more specialized and detailed procedural domain knowl-

edge than C4.5. Soft-thresholds, bagging, and stratified sampling are useful for many tasks
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besides keyphrase extraction, but the ten steps of the Extractor algorithm are intended specif-

ically for keyphrase extraction. In our application of C4.5, we avoided using any specialized

procedural domain knowledge. The experimental results support the view that specialized

procedural domain knowledge is valuable for learning to extract keyphrases from text. 

As we mentioned earlier (in Section 3), in the time since we submitted this paper, Frank

et al. (1999) developed Kea, which takes a Bayesian approach to keyphrase extraction. Kea

includes procedural domain knowledge, in the form of a final post-processing operation. A

candidate keyphrase is eliminated if it is contained within another candidate keyphrase that

has a higher score. Frank et al. (1999) compare GenEx, Kea, and C4.5, when both Kea and

C4.5 include their post-processing operation. On their corpora (a subset of our corpora), they

found no statistically significant differences among the three algorithms. These results also

support the importance of specialized procedural domain knowledge. The results suggest that

the amount of procedural domain knowledge that is required for good performance on this

task may be smaller than we suspected. 

We believe that precision (the percentage of the machine-generated keyphrases that

match the human-generated keyphrases) is a good measure for comparing keyphrase extrac-

tion algorithms (assuming they are compared using the same documents and extracting the

same number of keyphrases), but precision does not capture the subjective quality of the key-

phrases. Although our precision never went above 30%, human evaluation of the quality of

the machine-generated keyphrases suggests that about 80% of the keyphrases are of accept-

able quality. 

11. Future Work and Limitations

A limitation of our approach is that authors often use synonyms, to avoid boring the reader

with repetition. Unfortunately, repetition is a major clue for GenEx and C4.5 (using the fea-

tures in Table 4) that a candidate phrase is a keyphrase. We believe that the results could be

significantly improved by adding some kind of synonym detection to the keyphrase extrac-
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tion algorithms. 

Extractor 5.0 (the current version at the time of writing) works with documents in

English, French, German, and Japanese (Mathieu, 1999). We are currently working on add-

ing Spanish and Korean. We are also working on adding sentence extraction capability, in

addition to the existing phrase extraction capability (Luhn, 1958; Edmundson, 1969; Marsh

et al., 1984; Paice, 1990; Paice and Jones, 1993; Johnson et al., 1993; Salton et al., 1994;

Kupiec et al., 1995; Brandow et al., 1995; Jang and Myaeng, 1997). 

12. Conclusion

The experimental results support the claim that specialized procedural domain knowledge is

valuable for learning to extract keyphrases from text. A keyphrase extraction algorithm

incorporating such specialized knowledge (GenEx) performed significantly better than an

algorithm without such knowledge (C4.5).

Extractor can make a keyphrase list for an average journal article in one quarter of a sec-

ond (Table 13). The speed of Extractor makes it possible to use keyphrases in applications

where it would not be economically feasible to use human-generated keyphrases. Subjective

human evaluation of the keyphrases generated by Extractor suggests that about 80% of the

keyphrases are acceptable to human readers. This level of performance should be satisfactory

for a wide variety of applications. 
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